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So far in FoML
● Intro to ML and Probability refresher
● MLE, MAP, and fully Bayesian treatment
● Supervised learning

a. Linear Regression with basis functions
b. Bias-Variance Decomposition 
c. Decision Theory - three broad classification strategies
d. Neural Networks

● Unsupervised learning
a. K-Means, Hierarchical, and GMM for clustering

● Kernelizing linear Models
a. Dual representation, Kernel trick, SVM (max-margin classifier)



Tree Based Learning MethodsFor today

Contents are taken from - Intro to Statistical Learning

https://www.statlearning.com/


Agenda
● Tree-based methods for

○ Regression
○ Classification

● Improvements
○ Bagging
○ Random Forests
○ Boosting



Tree-based Methods
● Involve stratifying or segmenting the input (predictor) space

Figure credits: James et al. (ISLR)
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Tree-based Methods
● Prediction ← mean/mode of the training observations in that 

region
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Tree-based Methods
● Splitting rules used for segmenting can be summarized in a tree → 

Decision Trees 
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Tree-based Methods
● Simple and useful to interpret
● Typically not the best in the business

○ Can be improved (e.g. bagging, random forests, boosting etc.)
○ At the cost of interpretability
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Decision Trees for Regression



Example Problem
● Predicting the baseball players’ (log) salary
● Based on the prior experience (years) and hits (in the past year)
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Predicting the Salary

Figure credits: James et al. (ISLR)

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5



Predicting the Salary
● Top split

○ Based on the experience (less than 
4.5 years → R1)

○ Avg. salary for that split is the mean 
of the training samples in that 
region

○ 5.107 → e5.107 thousands of USD

Figure credits: James et al. (ISLR)
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Predicting the Salary
● Players above 4.5 years of experience 

→ right split
● Further, split based on the hits in the 

previous year major league
● Less than 117.5 into second region (R2), 

more than that into third region (R3)

Figure credits: James et al. (ISLR)



Predicting the Salary

Figure credits: James et al. (ISLR)
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Predicting the Salary

Called the ‘terminal’ nodes or the ‘leaves’ of the 
tree. Others where the predictor space is split is 
called ‘internal’ nodes.

Figure credits: James et al. (ISLR)
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The partitions in the predictor space

Figure credits: James et al. (ISLR)
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Interpreting the Tree
1. Experience is the most important factor that determines the salary

○ Players with less experience earn less

2. Given that a player is less experienced, the number of hits he made 
in the last year play little role in the salary

3. For the experienced players, number of hits made recently affect 
their salary. More hits → more salary
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Interpreting the Tree
● Probably an over-simplification of the true relation b/w {Year, Hits} 

and Salary
● However the advantage is that it is easier to interpret and has a 

nice graphical representation
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Stratification of the Feature Space
Building a Regression Tree

1. Divide the predictor space (i.e set of possible values for X1, X2, ..Xp) 
into J distinct and non-overlapping regions (R1, R2,....RJ)

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5



Stratification of the Feature Space
Building a Regression Tree

1.
2. For every Rj, make the same prediction which is the mean of the 

response value for training samples in Rj 
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Constructing the Regions Rj 
● Could have any shape. But for simplicity we choose high-dim 

rectangles 
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Constructing the Regions Rj 
● Could have any shape. But for simplicity we choose high-dim 

rectangles 
● The goal is to find boxes R1, R2, …. RJ that minimizes the RSS

mean response for the training 
observations within the jth box
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Constructing the Regions Rj 
● Infeasible to consider every possible partition 
● Instead take a top-down, greedy approach → recursive binary 

splitting
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Constructing the Regions Rj 
● Top-down: starts at the top of the tree and recursively splits the 

predictor space
● Greedy: at each step, best split is made at that particular step 

○ rather than looking ahead and picking a split that will lead to a better tree later
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Constructing the Regions Rj 
Recursive Binary Splitting

● First select the predictor Xj, and then the cutpoint s → leads to a 
greatest reduction in RSS



Constructing the Regions Rj 
Recursive Binary Splitting

seek the value of j and s that minimize the equation
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Constructing the Regions Rj 
Recursive Binary Splitting

● Next we repeat the process: look for the best predictor and best 
cutpoint that minimizes the RSS further

● But this time we split one of the two previously identified regions
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Constructing the Regions Rj 
Recursive Binary Splitting

● Continue until a stopping criterion is reached
○ E.g., until no region contains more than five observations 
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Constructing the Regions Rj 
Recursive Binary Splitting

● Once the regions are identified, prediction is the mean response 
of the training samples in that region
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Constructing the Regions Rj 
Recursive Binary Splitting (a 5 region example)

Figure credits: James et al. (ISLR)
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Overfitting
● Above procedure may give good predictions on training data

○ But likely to overfit 

● This is because the resulting tree may be too complex
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Overfitting
● Smaller tree with fewer splits might lead to lesser variance and 

better interpretation
○ At the cost of a little bias
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Overfitting
● One way to achieve this

○ build the tree only when the decrease in the RSS due to each split exceeds some 
(high) threshold
■ Results in smaller trees, but is short-sighted
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Tree Pruning
● Grow a large tree, then prune it back to obtain a subtree
● How to find the best subtree?

○ Intuitively, pick the one with min. test/validation error
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Tree Pruning
● Estimating the cross-validation error for every possible subtree is 

cumbersome (large number of subtrees are possible)
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Tree Pruning - Cost Complexity Pruning
● Also known as weakest link pruning
● Rather than considering every possible subtree, consider a 

sequence of subtrees indexed by ⍺
● For each value of ⍺, ∃ a subtree T ⊂ T0 s.t. the equation is 

minimum

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5

iPad Pro 12.9" 5



Tree Pruning - Cost Complexity Pruning
● As we increase 𝛼, branches get pruned in a nested fashion
● We can select the value of 𝛼 from cross-validation
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Tree Pruning - Cost Complexity Pruning
1. Grow large tree using recursive binary splitting
2. Apply cost complexity pruning → obtain a sequence of subtrees 

as a function of 𝛼
3. Compute the validation (or cross validation) performance and 

pick the best 𝛼 that minimizes the error
4. Return the subtree from step 2 that corresponds to the chosen 𝛼
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Baseball Salaries Example

Figure credits: James et al. (ISLR)
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Classification Trees



Trees for Classification
● Similar to the Regression Trees
● Except, predict a qualitative response



Prediction in Classification Trees
● The most commonly occurring class of training observations in 

the region - Majority voting
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Prediction in Classification Trees
● Along with the class prediction for a terminal node

○ class proportions within the regions of terminal nodes
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Growing a Classification Tree
● Recursive binary splitting
● RSS will not do, a natural alternative is classification error 

○ Fraction of the training observations in that region (Rm) that do not belong to 
the most common class
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Growing a Classification Tree
● Classification error is not very sensitive for tree-growing

○ Two more metrics

● Gini Index and Entropy
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Growing a Classification Tree
● Gini Index → minimizes the total variance across the K classes

○ Referred to as a measure of node purity
■ Small value → node contains predominantly observations from a single 

class
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Growing a Classification Tree
● Entropy 

○ Also serves as a measure of node purity
■ Small value → node contains predominantly observations from a single 

class
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Pruning a Classification Tree
● Any of the three metrics can be used

○ classification error might be preferred if prediction accuracy is the goal
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Heart Disease Example
● Binary outcome (Yes or No)
● 13 predictors: Age, Sex, Chol, heart and lung function 

measurements etc.
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Heart Disease Example

Figure credits: James et al. (ISLR)
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Heart Disease Example

Figure credits: James et al. (ISLR)
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Some Notes
● Trees can be constructed in the presence of qualitative variable

○ E.g. Sex and Thal variables

● Some of the splits yield two terminal nodes that have the same 
predicted value
○ RestECG < 1
○ Why? → leads to increased node purity (all 9 of right split observations has a 

response of yes, whereas 7/11 of left split observations have Yes response)
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Trees vs. Linear Models



Trees vs. Linear Regression
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Trees vs. Linear Regression

● Which model is better?
○ Depends on the problem at hand

● If the relationship between the features and response is well approximated by the 
linear model
○ LR is likely to work better (RT does not exploit the linear structure)

● If there is a highly nonlinear and complex relationship
○ Decision Trees  may outperform the classical methods
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Trees vs. Linear Regression

Figure credits: James et al. (ISLR)
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Advantages of Trees
● Very easy to explain to people

○ Some believe that they mirror human decision-making

● Can be displayed graphically (even to a non-expert)
● Can handle qualitative variables 

○ Without the necessity of dummy variable



Disadvantages of Trees
● Generally do not have the same level of predictive accuracy than 

some of the other techniques
● Can be non-robust

○ Small change in data may cause a large change in the final estimated tree



Next: More powerful prediction models
● Model combination tools

○ Bagging and Boosting



Thank You


